Supplementary2026
A Cellular and Transcriptomic Atlas of the Aged Mouse Hematopoietic System.

Ryan R White, Kun Xiong, Matthew Wakai, Allison Surian, Christina Adler, Nicole Negron, Min Ni, Tea Shavlakadze, Yu Bai, David J Glass

Organism

mouse

Tissue Type

HSC

Platforms

scRNA-seq

Abstract

Aging is a dominant risk factor for chronic diseases characterized by the functional decline of tissues and organs. During aging, the hematopoietic system declines in regenerative capacity-seemingly attributable to increases in DNA damage, replicative stress, and autophagic flux-resulting in skewing towards a myeloid lineage and away from a lymphoid lineage. Here, we characterized the transcriptomic and cellular landscape of the aged C57Bl/6J mouse hematopoietic system using a combination of bulk RNAseq and single cell RNAseq (scRNAseq). We show that aging leads to global transcriptional alterations in bulk peripheral blood mononuclear cells (PBMCs), lineage marker-depleted bone marrow cells (Lin-BM), and in hematopoietic stem and progenitor cells (HSPCs), immunophenotypically lineage marker negative (Lin-) Sca1+ cKit+ (LSK+). These changes indicate widespread activation of inflammatory processes, namely in PBMCs and Lin-BM cells. Interestingly, there is also a downregulation of cell cycle genes in HSPCs during aging. ScRNAseq across 39 hematopoietic cell types revealed age-related skewing in cell composition. Aged PBMCs showed significant decreases in CD4 and CD8 naïve cells concomitant with increases in CD4/8 memory and CD8 exhausted T cell populations. Lin-BM cells showed significant myeloid skewing in common myeloid progenitor (CMP) cells, as well as in the HSC population. We also identified a unique HSC population marked by increased Vwf, Wwtr1, and Clca3a1 expression that does not exist in young HSCs, thus likely marking true aged HSCs. Collectively, this work should serve as a useful resource for understanding and therapeutically targeting the aged hematopoietic system. © 2026 The Author(s). Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.

© 2026 HSC Aging Atlas. A curated database for hematopoietic stem cell aging research.